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Bifurcations of synchronized responses in synaptically coupled Bonho¨ffer –van der Pol neurons
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The Bonho¨ffer–van der Pol~BvdP! equation is considered as an important model for studying dynamics in
a single neuron. In this paper, we investigate bifurcations of periodic solutions in model equations of four and
five BvdP neurons coupled through the characteristics of synaptic transmissions with a time delay. The model
can be considered as a dynamical system whose solution includes jumps depending on a condition related to
the behavior of the trajectory. Although the solution is discontinuous, we can define the Poincare´ map as a
synthesis of successive submaps, and give its derivatives for obtaining periodic points and their bifurcations.
Using our proposed numerical method, we clarify mechanisms of bifurcations among synchronized oscillations
with phase-locking patterns by analyzing periodic solutions observed in the coupling system and its sub-
systems. Moreover, we show that a global behavior of chaotic itinerancy or a phenomenon of chaotic transi-
tions among several quasiattracting states can be observed in higher-dimensional systems of the synaptically
four and five coupled neurons.
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I. INTRODUCTION

Synchronization of oscillatory phenomena in globa
coupled neuronal models have been investigated extens
to understand information processing in the brain@1,2#. The
Bonhöffer–van der Pol~BvdP! or the FitzHugh–Nagumo
@3–5# neuron is considered as an important model for stu
ing dynamics in a single neuron. Although there are lots
papers on synchronization phenomena in linearly coup
neuronal oscillators, relatively little has been investigated
a more realistic model describing the time-dependent c
ductance of the synapse@6–8#. We consider a model of neu
rons coupled through delayeda functions@9# for describing
the characteristics of synaptic transmissions with a time
lay.

In Ref. @10#, we have formalized the model as a dynam
cal system whose solution includes jumps depending o
condition related to the behavior of the trajectory; and th
we have proposed a numerical method for calculating bi
cations of periodic solutions observed in a coupling syst
with arbitrary number of Hodgkin-Huxley~HH! neurons
@11#. The validity was illustrated using two coupled H
equations. From the analysis, we have clarified mechani
of transitions of in-phase and antiphase periodic solutio
chaotic oscillations and so on. However, in considering
method for applying to the system with a large number
coupling, the BvdP neuronal model, which is considered a
simplified equation of the four-dimensional HH equation, h
an advantage. In Ref.@12#, we have shown a parameter set
the BvdP system, such that the two kinds of models w
coupling of two and three neurons are qualitatively ve

*Email address: tsu@ee.tokushima-u.ac.jp
†Email address: yosinaga@medsci.tokushima-u.ac.jp
‡Email address: kawakami@ee.tokushima-u.ac.jp
1063-651X/2002/65~3!/036230~9!/$20.00 65 0362
ly

-
f
d
r

n-

e-

-
a

n
r-

s
s,
e
f
a

s
f
h

similar in a bifurcational point of view. In this paper, w
investigate bifurcations of periodic solutions in model equ
tions of synaptically coupled BvdP neurons with coupli
numbers four and five. Because of all-to-all coupling stru
ture having the same coupling coefficients, the system
symmetric properties. We formulate all kinds of subsyste
with delayed mutual- and self-coupling and analyze symm
ric solutions with phase-locking patterns, which behave
invariant subspaces.

In the four- and five-coupled-neuron systems, we obse
a global behavior of the chaotic itinerancy@13–15#, which is
known as a phenomenon of chaotic transitions among s
eral quasiattracting states, regarded as a model phenom
for interpreting an associative dynamics or a memory sea
ing process@16,17# in the brain. The bifurcation analysi
gives rise to this observation for the Hodgkin-Huxley ty
neuronal network with synaptic coupling.

II. COUPLED BvdP EQUATIONS

Let us consider theN-coupled BvdP system consisting o
the i th BvdP equation

dx@ i #

dt
5c~x[ i ]1y@ i #2 1

3 x[ i ] 3
1z@ i #!,

dy@ i #

dt
52

1

c
~x@ i #1by@ i #1a!, ~2.1!

and thei th linear differential equations

da@ i #

dt
5

b@ i #

t
,

db@ i #

dt
522

b@ i #

t
2

a@ i #

t
, ~2.2!
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for i 51,2,...,N. Note that the solution of the variablea@ i # in
Eq. ~2.2! with initial condition (a@ i #,b@ i #)5(0,1) att50 rep-
resents thea function @9# or a@ i #(t)5(t/t)e2t/t, which is a
model for describing the time-dependent conductance of
synapse. In Eq.~2.1!, the following definition is used:

z@ i #52(
j Þ i

d

N21
~x@ i #2 x̂!a [ j ] , ~2.3!

wherex̂ represents the synaptic reversal potential@9#, which
depends on the type of synaptic transmitter released fro
presynaptic neuron and their receptors. The coupling
comes excitatory and inhibitory withx̂.xeq and x̂,xeq, re-
spectively, wherexeq denotes an equilibrium potential of ev
ery neuron.

We assume that a firing of the membrane potential of
i th neuron occurs when the state variablex@ i # crosses zero a
a threshold value with changing its sign from negative
positive. Each vector (a@ i #,b@ i #) jumps to the constant~0, 1!
at t5t0

@ i #1td where t0
@ i # is the time whenx@ i # changes to

x@ i #.0. Namely, the firing information of a neuron tran
forms to all other neurons with the time delaytd .

III. METHOD OF ANALYSIS

We summarize methods for calculating bifurcations in
class of dynamical systems including the coupled Bv
equations defined in the preceding section. We treat the
tem such that its solution jumps to a constant value attd past
the time when the solution crosses one of several local
tions in the state space.

Consider a set of general autonomous differential eq
tions consisting of Eqs.~2.1! and~2.2!, for i 51,2,...,N, such
that

dX

dt
5 f ~X!, ~3.1!

where X is the state X5(x@1#,y@1#,a@1#,b@1#,...,
x@N#,y@N#,a@N#,b@N#)8PRn with n54N, where ( )8 denotes
the transpose. We assume that there exists a solution
initial condition X5X0 at t5t0 , denoted by X(t)
5w(t;t0 ,X0), for all t.

FIG. 1. A schematic diagram of discontinuous trajectory.
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A. Poincaré map

Figure 1 shows a schematic diagram of a discontinu
trajectory with jumps in the state space. A local sectionMk
of the subspacePk in Fig. 1 and its local coordinatehk for
k50,1,...,m21 are, respectively, denoted by

Mk5$XPRn:gk~X!50,gk :Rn→R%

hk :Mk→Pk,Rn21;Xk°uk . ~3.2!

Then, the Poincare´ map

T:P0→P0 ; u0°T~u0!, ~3.3!

can be defined byT5Tm , whereTm is given by the follow-
ing successive formula fork50,1,...,m21:

Tk11~u0!5Sk+Tk~u0!, ~3.4!

with T0 as the identical map. The mapSk in Eq. ~3.4! is
given by

Sk :Pk→Pk11

uk°hk11+w„tk~hk
21~uk!…1tk :td1tk ,

Pk+w„td1tk ;tk ,hk
21~uk!…),

~3.5!

wheretk„hk
21(uk)… is the time in which the trajectory ema

nating from a pointhk
21(uk) on the local sectionMk at t

5tk will hit the next local sectionMk11 . Moreover,Pk is
the map such that a set of the elements inXkPRn:
$(ak

@ j # ,bk
@ j #): j PJk%, for someJk,@1,2,...,N#, is mapped to

the constant vector~0, 1!, i.e.,

Pk :Rn→Rn

Xk°~xk
@1# ,yk

@1# ,ak
@1# ,bk

[1] ,...,xk
@ j # ,yk

@ j #,0,1,...,xk
@N# ,

yk
@N# ,ak

@N# ,bk
@N#)8

for any j PJk . ~3.6!

For calculating bifurcation sets of a fixed point observ
in the Poincare´ mapT, it is required to obtain the first and th
second derivatives with respect to the initial state and/or
system parameter.

The first derivative ofT with respect to the initial state
u0 , or

]T

]u0
5

]Tm

]u0
,

is given by obtaining the derivatives of the submaps, succ
sively, for k50,1,...,m21,

]Tk11

]u0
5

]Sk

]uk

]Tk

]u0
with

]T0

]u0
5I , ~3.7!

where the derivatives ofSk’s are obtained by solving the
first-order variational equations, see Appendix.

Moreover, the first and the second derivatives ofT with
respect to the parameterl and the initial statesu0 andv0 ,
0-2
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]T

]l
5

]Tm

]l
,

]2T

]u0]v0
5

]2Tm

]u0]v0
,

]2T

]u0]l
5

]2Tm

]u0]l
,

are given by obtaining the derivatives of the submaps, s
cessively, fork50,1,...,m21,

]Tk11

]l
5

]Sk

]l
1

]Sk

]uk

]Tk

]l
,

]2Tk11

]u0]v0
5

]2Sk

]uk]vk

]Tk

]v0

]Tk

]u0
1

]Sk

]uk

]2Tk

]u0]v0
,

]Tk11

]u0]l
5

]2Sk

]uk]l

]Tk

]u0
1

]Sk

]uk

]2Tk

]u0]l
1

]2Sk

]uk]vk

]Tk

]u0

]Tk

]l
,

~3.8!

with

]T0

]u0
5I ,

]T0

]l
50,

]2T0

]u0]v0
50,

]2T0

]u0]l
50.

The derivatives ofSk’s in Eq. ~3.8! are obtained by solving
the first- and the second-order variational equations.

B. Bifurcation of a periodic solution

If a solution of the coupled BvdP system is periodic, th
the pointu satisfying

u2T~u!50 ~3.9!

becomes a fixed point ofT. Hence the study of a periodi
solution observed in the coupled BvdP system is topolo
cally equivalent to the study of a fixed point satisfying E
~3.9!. Note that anm-periodic point can be studied by repla
ing T with Tm, mth iterates ofT, in Eq. ~3.9!. Therefore, in
the following we consider only properties of a fixed point
T and its bifurcations. Similar argument can be applied to
periodic point ofT.

Let uPP0 be a fixed point ofT. Then the characteristic
equation of the fixed pointu is defined by

detS mI 2
]T

]u0
~u! D50, ~3.10!

where I is the (n21)3(n21) identity matrix, and
]T(u)/]u0 denotes the derivative ofT(u) with respect to the
initial stateu0 . We callu hyperbolic if all absolute values o
the eigenvalues of]T(u)/]u0 are different from unity. The
topological type of a hyperbolic fixed point is determined
the dimEu and detLu, whereEu is the intersection ofP0 and
the direct sum of the generalized eigenspaces of]T(u)/]u0
corresponding to the eigenvaluesm such thatumu.1 and
Lu5]T(u)/]u0uEu.

A hyperbolic fixed point is calledD type, if detLu.0, and
I type if detLu,0. By this definition we have 2(n21) topo-
logically different types of hyperbolic fixed points. Thes
types are

kD ~k50,1,...,n21!, kI ~k51,...,n22!,
03623
c-
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where D and I denote the type of the fixed point and th
subscript integer indicates the dimension of the unstable s
space:k5dimEu. This classification is also obtained from
the distribution of characteristic multipliers of Eq.~3.10!.
That is,D and I correspond to the even and odd number
characteristic multipliers on the real axis~2`, 21!, and k
indicates the number of characteristic multiplier outside
unit circle in the complex plane.

Bifurcation occurs when the topological type of a fixe
point is changed by the variation of a system parameter.
codimension-one bifurcations that the coupled BvdP sys
has a possibility to occur are: tangent bifurcation, perio
doubling bifurcation, the Neimark-Sacker bifurcation, andD
type of branching. These bifurcations are observed when
hyperbolicity is destroyed. The conditions for the form
three bifurcations correspond to the critical distribution
the characteristic multiplier:m511, m521, and umu51,
respectively. While, aD type of branching or a pitchfork
bifurcation appears in the system that possess some sym
ric property. This type of bifurcation occurs when a real ch
acteristic multiplier passes through the point~1, 0! in the
complex plane. Thus the bifurcation condition is a degen
ate case of the tangent bifurcation.

The numerical determination of the bifurcation set is a
complished by solving the system of equations that repre
the relation of fixed point, i.e., Eq.~3.9!, and the bifurcation
condition, i.e., Eq.~3.10! with the corresponding value ofm.
For this purpose, Newton’s method is used. The princi
idea of this procedure for finding bifurcation parameters w
presented by Kawakami@18#. The Jacobian matrix of the se
of equations is derived from the derivatives of the mapT,
given in the preceding subsection.

C. Symmetrical properties

In this subsection, we summarize notations on symme
properties of the system in Eq.~3.1!. A symmetric property
of the state space for Eq.~3.1! is defined by the invariance o
f under the action of a groupG, i.e.,

g f~X!5 f ~gX!, ; gPG. ~3.11!

Then, the functionf satisfying Eq.~3.11! is said to beG
equivariant@19,20#. The orbit of the action ofG on XPRn is
the set

GX5$gX:gPG%. ~3.12!

The groupGX is called aG orbit of X.
The isotropy subgroupSX of X is defined by

SX5$gPG:gX5X%. ~3.13!

The elements of the isotropy subgroup ofX are called the
stabilizers ofX. We point out that a subgroup ofG may not
be an isotropy subgroup. The isotropy subgroup defines
symmetry of a pointX in the state space. Two points on th
same G orbit have conjugate isotropy subgroups,SgX
5g21SXg. Two different elements of points have conjuga
isotropy subgroups. ItsG equivariant forcesf to have invari-
0-3
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ant linear subspaces corresponding to certain subgroup
G. The fixed point subspace of a subgroupH of G is defined
by

Sfix~H !5$XPRnuhX5X, ; hPH%. ~3.14!

The subspaceSfix(H) is always a linear subspace ofRn since

Sfix~H !5 ù
hPH

ker~h2I n!, ~3.15!

whereI n is then3n identity matrix.

IV. ANALYSIS OF SYMMETRY

In this section, we consider symmetric properties depe
ing on the symmetry of the invariant subspace in the s
space of four- and five-coupled-neuron systems.

Before considering concrete systems, let us define a p
difference of a periodic solution. We assume a periodic
lution of Eq. ~3.1! with initial condition X0ªX(0) exists:

X~ t !5w~ t;0,X0!. ~4.1!

If there exists a matrixg and a timeT0 such that

gw~ t;0,X0!5w~ t;0,gX0!5w~ t1T0 ;0,X0!, ~4.2!

for all t, then we call it a (g,T0)-symmetric periodic solu-
tion. Note that the symmetric periodic solution has two kin
of symmetries, i.e., spatial and temporal symmetries. T
temporal symmetry involves a phase difference of wa
forms among neurons.

A. Four coupled neurons

We first consider the system of four coupled BvdP ne
rons. Equation~3.1! with N54 is invariant under the pos
sible permutations of the state variables, forming a symm
ric group. The matrices constituting the symmetric group
as follows:

g15F I 4 0 0 0

0 I 4 0 0

0 0 I 4 0

0 0 0 I 4

G , g25F 0 I 4 0 0

0 0 I 4 0

0 0 0 I 4

I 4 0 0 0

G ,

g35F I 4 0 0 0

0 0 I 4 0

0 0 0 I 4

0 I 4 0 0

G , g45F I 4 0 0 0

0 I 4 0 0

0 0 0 I 4

0 0 I 4 0

G ,

g55F 0 I 4 0 0

I 4 0 0 0

0 0 0 I 4

0 0 I 4 0

G ,
03623
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The symmetric group has five isotropy subgroupsS41

5$g1 ,g2 ,g2
2,g2

3%, S425$g1 ,g3 ,g3
2%, S435$g1 ,g4%, S44

5$g1 ,g5%, and S455$g1%. We can define invariant sub
spaces as follows:

Sfix~S41!5$@Xa8 Xa8 Xa8 Xa8#8PR16uXaPR4%,

Sfix~S42!5$@Xa8Xb8 Xb8 Xb8#8PR16uXa , XbPR4%,

Sfix~S43!5$@Xa8 Xb8 Xc8 Xc8#8PR16uXa ,Xb ,XcPR4%,

Sfix~S44!5$@Xa8 Xa8 Xb8 Xb8#8PR16uXa ,XbPR4%,

We note that the behavior of a symmetric periodic solut
with a phase-locking pattern is restricted to an invariant s
space. One of analyses for phase-locked periodic solut
can be reduced to an analysis for periodic solutions obse
in simplified systems with delayed mutual- and se
coupling, as shown in Fig. 2. For example, an entirely
phase and an antiphase periodic solutions, which are pos
observed in the system, appear inSfix(S41) and Sfix(S44),
respectively. The antiphase response is a (g2

2,L/2)-symmetric
periodic solution, whereL is the period of the periodic solu
tion.

B. Five coupled neurons

Next, we consider the system of five coupled BvdP ne
rons. The functionf in Eq. ~3.1! with N55 is commutative
with respect to an element of the symmetric group. Acco
ing to the similar discussion of symmetric properties in t
previous coupling case, we obtain simplified systems for
analysis of entirely and partially in-phase periodic solutio
as shown in Fig. 3, which behave in the following invaria
subspaces:

Sfix~S51!5$@Xa8 Xa8 Xa8 Xa8 Xa8#8PR20uXaPR4%,

FIG. 2. Schematic diagrams of subsystems with delayed mut
and self-coupling in the four coupled neurons. In the diagram,i

denotes thei th BvdP neuron fori 51,2,3,4. The coupling coefficien
is denoted beside the arrow head indicating the direction of c
pling.
0-4
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Sfix~S52!5$@Xa8 Xb8 Xb8 Xb8 Xb8#8PR20uXa ,XbPR4%,

Sfix~S53!5$@Xa8 Xb8 Xc8 Xc8 Xc8#8PR20uXa ,Xb ,XcPR4%,

Sfix~S54!5$@Xa8 Xb8 Xc8 Xd8 Xd8#8

PR20uXa ,Xb ,Xc ,XdPR4%,

Sfix~S55!5$@Xa8 Xa8 Xb8Xb8 Xb8#8PR20uXa ,XbPR4%,

Sfix~S56!5$@Xa8 Xb8 Xb8Xc8 Xc8#8PR20uXa ,Xb ,XcPR4%.

V. ANALYSIS OF BIFURCATION

This section is devoted to showing numerical results
tained from bifurcation analysis of four- and five-couple
BvdP-neuron systems. In order to view results of two- a
three-coupled-BvdP-neuron systems, see Ref.@12#.

In the following, we fix several system parameters in E
~2.1!–~2.3! asa50.3,b50.8,c53, t52, andx̂520.3, and
change the values of the coupling coefficientd and the time
delay td . We remark that the following results were calc
lated by the fourth-order Runge-Kutta method with t
double precision numbers. We used the method of bisec
for detecting threshold crossing and checked if both prop
of solutions and global structure of bifurcation diagrams
not change qualitatively, due to the variation of the toleran
of the bisection as well as the step size of numerical integ
tion.

Before showing results, we summarize some notatio
The symbolskDl

m and kI l
m denote hyperbolic periodic points

wherek indicates the number of characteristic multiplier ou

FIG. 3. Schematic diagrams of subsystems with delayed mut
and self-coupling in the five coupled neurons. In the diagram,Ni

denotes thei th BvdP neuron fori 51,2,...,5.
03623
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side the unit circle in the complex plane,m indicates
m-periodic point, andl indicates the number to distinguis
the several same sets, if necessary. In the bifurcation
gram, we use notations:Gl

m , I l
m , Nl

m , andDl
m for tangent

bifurcation, period-doubling bifurcation, the Neimark
Sacker bifurcation, andD type of branching, respectively
wherem indicates a bifurcation set form-periodic point and
l indicates the number to distinguish the several same se
they exist.

A. Bifurcations in four coupled BvdP neurons

We consider a system of four coupled BvdP neurons.
analyzing periodic solutions observed in several subsyst
as shown in Fig. 2, we obtained a bifurcation diagram
periodic solutions, see Fig. 4. In this figure, the shad
portions denote parameters at which various types of st
periodic solutions exist: backward diagonal~///! for an en-
tirely in-phase solution inSfix(S41), vertical ~uuu! for a par-
tially in-phase solution inSfix(S42), forward diagonal~\\\!
for an antiphase solution inSfix(S44), and dotted portion for
a two-periodic solution inSfix(S44). The regions overlapped
by several patterns denote coexistence of the correspon
solutions, depending on the initial condition. Examples
various kinds of attractors with phase-locking patterns
shown in Fig. 5.

When the value oftd increases across the bifurcation s
D2

1 in Fig. 4, we observe theD type of branching with for-
mula

1D1
112 0D2

1→ 0D1
1,

where the left- and right-hand sides of the arrow indicate
periodic points before and after the bifurcation, respective
This bifurcation formula represents a transition betwee
partially in-phase (0D2

1) and an antiphase (0D1
1) periodic so-

lutions as shown in Figs. 5~d! and ~e!, respectively. On the
other hand, theD type of branchingD3

1 causes a bifurcation
between unstable partially in-phase periodic solutions
Sfix(S44) and inSfix(S43).

l-

FIG. 4. Bifurcation diagram for periodic solutions in fou
coupled BvdP neurons.
0-5
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B. Bifurcations in five coupled BvdP neurons

Next, we consider a system of five coupled BvdP neuro
Figure 6 shows a bifurcation diagram obtained from
analysis of periodic solutions observed in several subsyst
as shown in Fig. 3. The parameter regions at which sta
periodic solutions exist are marked by the shading: backw
diagonal~///! for an entirely in-phase solution inSfix(S51),
vertical ~uuu! for a partially in-phase solution inSfix(S52), for-
ward diagonal ~\\\! for a partially in-phase solution in
Sfix(S55), dark shaded portion for a nearly triphase soluti
in Sfix(S56), and dotted protion for a two-periodic solution
Sfix(S55). Examples of various kinds of attractors wi
phase-locking patterns are shown in Fig. 7.

When the value oftd increases across the bifurcation s
D2

1 in Fig. 6, we observe theD type of branching with for-
mula:

1D1
1→ 0D1

112 1D2
1,

where 1D2
1 is an unstable partially in-phase periodic soluti

FIG. 5. Examples of periodic solutions observed in four coup
neurons. The circled points denote iterated points by Poincare´ map.
03623
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FIG. 6. Bifurcation diagram for periodic solutions in fiv
coupled BvdP neurons.

FIG. 7. Examples of attractors observed in five coupled neuro
The circled points denote iterated points by Poincare´ map.
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in Sfix(S53). In the triangle region without shading in Fig. 6
we observe chaotic attractors which behave in various ki
of invariant subspaces, see Fig. 7 for an example of chao
Sfix(S55).

C. Global behavior of chaotic attractor

In this subsection, to illustrate differences on dynam
between low- and high-dimensional coupled systems,
show a global behavior observed in the high-dimensio
systems of four- and five coupled BvdP neurons.

Figure 8 shows wave forms of a chaotic attractor in
four-coupled-neuron system. The attractor exhibits a tem
ral partial synchronization with switching clusters: one
which both ux@1#2x@2#u and ux@3#2x@4#u are small, and an-
other in which bothux@2#2x@3#u and ux@4#2x@1#u are small.
Recall that the state space includes the invariant subs
Sfix(S44) and its conjugate subspaces. Therefore, this p
nomenon is considered as a chaotic itinerancy among se

FIG. 8. A chaotic itinerancy observed in the four-couple
neuron system at (td ,d)5(0.35,1.8036).
03623
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quasiattracting states in the neighborhoods of invariant s
spaces.

The parameter at which the chaos can be seen is d
mined as follows. Figure 9 shows an enlarged bifurcat
diagram of Fig. 4. To see the relation among bifurcation s
and the property of periodic points, we show a schema
one-parameter bifurcation diagram with variation of the p
rameterd for fixed td50.5, in Fig. 10. In the figure,0D1

2

indicates a two-periodic solution restricted in the invaria
subspaceSfix(S44). By decreasing the value ofd continu-
ously, a couple of stable asymmetric two-periodic solutio

0D2
2 caused by theD type of branching of0D1

2 bifurcates to

1D2
2 and 2I 2

2 through the bifurcationsD3
2 and I 1

2, respec-
tively. We have a cascade of period-doubling bifurcatio
toward chaotic itinerancy, by further decreasing ofd. The
parameter range in which the chaos can be seen is very s
and additionally the attractor coexists with a stable perio
solution as shown in Fig. 9. Hence we assert that bifurca
analysis of periodic solutions is very useful for detecti
chaotic attractor.

Similar phenomenon of global chaotic behavior can
observed for the five-coupled-neuron system, see Fig. 11
an example. From this figure, the quasiattracting states

FIG. 9. Enlarged bifurcation diagram of Fig. 4.

FIG. 10. A schematic diagram of one-parameter bifurcations.
0-7
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the trajectory itinerants are near subspaces satisfyingx@1#

5x@2#5x@3# and x@4#5x@5# for t in around @0, 3400#; x@1#

5x@3# and x@2#5x@4#5x@5# for t in around @3400, 6800#;
x@1#5x@3#5x@5# and x@2#5x@4# for t in around@6800, 8900#
and so on.

VI. CONCLUDING REMARKS

We have investigated mechanisms of various bifurcat
phenomena observed in BvdP neurons coupled through
characteristics of synaptic transmissions with a time de
The main results obtained from the analysis are summar
as follows

~1! We formulated all kinds of subsystems with delay
mutual-and self-coupling and analyzed symmetric soluti
with phase-locking patterns, which behave in invariant s
spaces.

~2! We calculated bifurcations of periodic solutions wi
various kinds of synchronization. We found mechanisms

FIG. 11. A chaotic itinerancy observed in the five-couple
neuron system at (td ,d)5(0.585,1.8).
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transitions among not only various types of periodic so
tions but also chaotic oscillations.

~3! Chaotic attractor appearing in this paper is essenti
caused by the effect of coupling. This is easily understood
the fact that the single BvdP equation cannot generat
chaos.

~4! Moreover, we have shown a phenomenon of chao
itinerancy for both four and five coupled neurons. It is co
jectured that the four-coupled-neuron system, which is c
sidered as a mutual coupling system of two chaotic neur
in certain parameter setting, is the minimal system gene
ing a chaotic itinerancy. We note that the bifurcation analy
plays an essential role for finding this type of global chao
attractor, because the chaos can be seen in a very sma
rameter region and coexists with a stable periodic solutio

The synaptically coupled BvdP model with rich glob
dynamics is adequate to reproduce various types of sync
nized oscillations in a neuronal network. Further analyses
needed for clarifying a mechanism of the generation of g
bal chaotic behavior.

APPENDIX: THE DERIVATIVES OF SUBMAPS

From the definition ofSk in Eq. ~3.5!, the derivative ofSk
with respect to the initial stateuk is given by

]Sk

]uk
5

]hk11

]xk11
S ]w

]xk
~tk1tk ;tk ,xk!

1 f „hk11
21 ~uk11!…

]tk

]xk
D ]hk

21

]uk

5
]hk11

]xk11 S I 2
1

]gk11

]xk11
f „hk11

21 ~uk11!…

3 f „hk11
21 ~uk11!…

]gk11

]xk11D ]w

]xk
~tk1tk ;tk ,xk!

]hk
21

]uk
,

~A1!

where the second equation is obtained by eliminat
]tk /]xk in the first equation, which comes from the relatio

]

]xk
gk11@w„tk~xk!1tk ;tk ,xk…#50,

since xk115w„tk(xk)1tk ;tk ,xk…PMk11 holds for anyxk
PMk . Note that, in Eq.~A1!, the transversability of the
solution with respect toMk11 guarantees

]gk11

]xk11
f „hk11

21 ~uk11!…Þ0.

-

0-8
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On the other hand, to avoid the discontinuity of the solut
at t5td1tk , we have

]w

]xk
~tk1tk ;tk ,xk!

5
]w

]yk
~gtk1tk ;td1tk ,yk!

]w

]xk
~td1tk ;tk ,xk!.

The right-hand side of the above equation is obtained
solving the first-order variational equations:
ky

s

n

.

03623
n

y

d

dt

]w

]xk
5

] f

]x

]w

]xk
with

]w

]xk
U

t5tk

5I , ~A2!

d

dt

]w

]yk
5

] f

]x

]w

]yk
with

]w

]yk
U

t5td1tk

5I , ~A3!

and putting t5td1tk and tk1tk in the solutions of Eqs.
~A2! and ~A3!, respectively. The derivation of the first an
the second derivatives ofSk with respect tol, uk andvk , in
Eq. ~3.8! is similar.
on

a-

ys.
@1# H. Golomb, D. Hansel, B. Shrainman, and H. Sompolins
Phys. Rev. A45, 3516~1992!.

@2# D. Hansel, G. Mato, and C. Meunier, Phys. Rev. E48, 3470
~1993!.

@3# R. FitzHugh, Biophys. J.1, 445 ~1961!.
@4# J. Rinzel, inNonlinear Diffusion, edited by W. E. Fitzgibbon

and H. F. Walker~Pitman, London, 1977!.
@5# J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE50, 2061

~1962!.
@6# S. Kim, S. G. Lee, H. Kook, and J. H. Shin, inNeural Net-

works: The Statistical Mechanics Perspective, edited by J. H.
Oh, C. Kwon, and S. Cho~World Scientific, Singapore, 1995!,
pp. 141–155.

@7# S. G. Lee, S. Kim, and H. Kook, Int. J. Bifurcation Chao
Appl. Sci. Eng.7, 889 ~1997!.

@8# S. Kim, H. Kook, S. G. Lee, and M. H. Park, Int. J. Bifurcatio
Chaos Appl. Sci. Eng.8, 731 ~1998!.

@9# E. R. Kandel, J. H. Schwartz, and T. M. Jessel, inPrinciples of
Neural Science, 3rd ed., edited by E. R. Kandel, J. H
Schwartz, and T. M. Jessel~Appleton & Lange, Norwalk,
1991!, Chap. 9.
, @10# T. Yoshinaga, Y. Sano, and H. Kawakami, Int. J. Bifurcati
Chaos Appl. Sci. Eng.9, 1451~1999!.

@11# A. L. Hodgkin and A. F. Huxley, J. Physiol.~London! 117, 500
~1952!.

@12# K. Tsumoto, T. Yoshinaga, and H. Kawakami, Int. J. Bifurc
tion Chaos Appl. Sci. Eng.11, 1053~2001!.

@13# K. Ikeda, K. Otsuka, and K. Matsumoto, Prog. Theor. Ph
Suppl.99, 295 ~1989!.

@14# K. Kaneko, Physica D41, 137 ~1990!.
@15# I. Tsuda, E. Koerner, and H. Shimizu, Prog. Theor. Phys.78,

51 ~1987!.
@16# K. Nakano, IEEE Trans. Syst. Man Cybern.SMC-2„3…, 381

~1972!.
@17# T. Kohonen, IEEE Trans. Comput.C-21„4…, 353 ~1972!.
@18# H. Kawakami, IEEE Trans. Circuits Syst.CAS-31, 246~1984!.
@19# M. Golubitsky and D. Schaeffer,Singularities and Groups in

Bifurcation Theory~Springer, New York, 1985!, Vol. I.
@20# M. Golubitsky, I. Stewart, and D. Schaeffer,Singularities and

Groups in Bifurcation Theory~Springer, New York, 1985!,
Vol. II.
0-9


